2020 Water Quality Summary

Town of Queenstown 7013 Main Street Queenstown, MD 21658 PWS ID# MD0170003

Important Information About Your Drinking Water

We are pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Thank you for allowing us the opportunity to serve you.

Dear Customer:

Each spring, we provide our customers with a report on water quality for the prior year. We encourage you to read this report to learn about the results of testing conducted and water samples collected during 2020.

This report has been prepared to familiarize you with the characteristics of the water system, including your source of supply, the quality of treated water, substances present in the water, and the maximum levels of those compounds permitted by state or federal regulations. We hope this report demonstrates our commitment to continually improve the water treatment process and protect our water resources.

Our water source is groundwater, drawn from the Matawan and Aquia aquifers. For more information on the source of your water and the significant potential sources of contamination, contact the Maryland Water Supply Program at the Maryland Department of the Environment at (410)537-3714 or visit on the web: http://www.mde.state.md.us/programs/Water/Water_Supply/Source_Water_Assessment_Program/Pages/by_county.aspx

We invite you to become involved in decisions affecting your drinking water by sharing your comments and concerns. If you have any questions about this report or would like more information about your water quality, please contact Amy W. Moore at 410-827-7646 or write to the Town at P.O. Box 4, Queenstown, MD 21658, or email townoffice@queenstown-md.com

You may also contact the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline at (800) 426-4791 for additional information about drinking water regulatory programs.

The Water Treatment Process

To provide you with quality drinking water, reliable treatment methods are used to eliminate or minimize the effects of contaminants that may be present in source waters. Water quality is monitored at each wellfield and throughout the distribution system to determine that state and federal primary water quality standards are met.

Groundwater from wells first passes through layers of soil, sand and gravel, which act as a natural filter. Groundwater comes from an underground source of water known as an aquifer. In some cases

groundwater supplies may be disinfected with chlorine to destroy bacteria that may be present and protect against microbial contaminants before being pumped into the distribution system. The level of this additive is monitored daily to ensure the proper dosage is being added. In some cases, pH correction and filtration are utilized.

Samples of treated and untreated water are taken regularly to assure that the required level of drinking water quality is maintained and that samples comply with state and federal standards for quality and safety.

A Word of Caution

Our treatment system is operated designed and to produce water that in compliance with all state and federal drinking water standards. substances microscopic organisms found in water may be a concern if they occur at high concentrations. For some contaminants, Maximum Contaminant Levels (MCL) have not been set because the EPA has not determined at what level they pose a public health risk. This is often because a reliable detection method is unavailable and/or because the contaminant is rarely found in treated water.

Some naturally occurring organisms commonly found in the natural water supplies may not be eliminated during the treatment process. This means that even a well-run system may contain low levels of microscopic organisms. The levels, however, are normally of little concern to healthy individuals. It should be noted, however, that under certain circumstances, organisms might amplify to serious levels within a customer's own water supply system.

customers, including residential, commercial, industrial customers, and other large facilities such as schools, hospitals, and hotels/motel, should follow appropriate procedures for maintaining their own internal plumbing systems and appliances. If you have any concerns about these matters, please call the EPA Safe Drinking Water Hotline at (800) 426-4791.

Why There May Be Contaminants in the Country's Water Supply

United States (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animal or human activity. Contaminants that may be present in source waters include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, livestock, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from storm water runoff, wastewater discharges, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.

Organic contaminants, including natural, synthetic and volatile organic chemicals, which are by-products of nature and industrial processes and petroleum production and can also, come from gas stations, storm water runoff and septic systems.

Radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some The contaminants. presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe **Drinking Water Hotline at (800)**

In order to ensure that tap water is safe to drink, the EPA and the State Division of Public Health (DPH) prescribe regulations, which limit the amount of certain contaminants in

systems. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. DPH also provides monitoring schedules and establishes sampling requirements for water utilities in order to maintain compliance with the Safe Drinking Water Act monitoring requirements.

For Your Safety—A Message for **People with Compromised Immune**

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections.

These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants available from the EPA's Safe Drinking Water Hot-line at (800) 426-4791.

To contact Susquehanna **Operational** please call: 1-443-252-1410

Special Considerations Regarding Children, Pregnant Women, **Nursing Mothers, and Others**

Children may receive a slightly higher amount of contaminant present in the water than do adults, on a body weight basis, because they may drink a greater amount of water per pound of body weight than do adults.

Sources of drinking water in the water provided by public water For this reason, reproductive or developmental effects are used for calculating a drinking water standard if these effects occur at lower levels than other health effects of concern. If insufficient information for a chemical (for example, lack of data on reproductive or developmental effects), an extra may uncertainty factor incorporated into the calculation of the drinking water standard, thus making the standard more stringent, to account for additional uncertainties regarding these effects. In the cases of lead and nitrate, effects on infants and children are the health endpoints upon which the standards are based.

Lead in drinking water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Oueenstown is responsible for providing high quality drinking water but cannot control the variety of used materials in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline www.epa.gov/safewater/lead.

What the Numbers Mean To You: The table shows the results of our monitoring during 2020. The EPA requires monitoring of numerous drinking water contaminants. Those listed are the only contaminants detected. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Definitions & Abbreviations used below: Primary Standards: Standards which relate to public health. MCLG: Maximum Contaminant Level Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MCL: Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. PPB: Parts per Billion. PPM: Parts per Million. N/A: Not Applicable. ND: None Detectable at testing limit. pCi/I: Picocuries per Liter. A measure of radioactivity in water. Std: Standard Units RUL: Recommended Upper Limit AL: Action Level. The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. <: Less Than. MRDL: Maximum Residual Disinfectant Level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. MRDLG: Maximum Residual Disinfectant Level Goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Keep Pharmaceuticals and Personal Care Products (PPCPs) Out of Our Drinking Water Where do PPCPs come from?

Pharmaceuticals and personal care products, known in the water industry as PPCPs, are a group of compounds consisting of human and veterinary drugs (prescription or over the counter) and consumer products, such as fragrance, lotions, sunscreens, house cleaning products, and others. PPCPs can be introduced into the environment in several ways, including:

- Flushing unused medications down the toilet or sink.
- Rinsing personal hygiene and household cleaning products down the drain.
- Excreting unabsorbed medications into the sewage system.
- Farm animals excreting veterinary drugs, including hormones and antibiotics, into fields where they run off into lakes and streams.
- Commercial improper disposal methods.

For Proper Disposal of PPCPs, the following Federal Guidelines are provided:

- Do not flush prescription drugs down the toilet or drain unless the label or accompanying patient information specifically instructs you to do so. For information on drugs that should be flushed visit the FDA's website at: www.fda.gov
- To dispose of prescription drugs not labeled to be flushed, you may be able to take advantage of community
 drug take-back programs or other programs that collect drugs at a central location for proper disposal. Call
 your city or county government's household trash and recycling service and ask if a drug take-back
 program is available in your community.

If a drug take-back or collection program is not available:

- 1. Take your prescription drugs out of their original containers.
- 2. Mix drugs with an undesirable substance, such as cat litter or used coffee grounds.
- 3. Put the mixture into a disposable container with a lid, such as an empty margarine tub, or sealable bag and place in the trash.

Parameter	Unit	Collection Date	e MCL	MCLG	Highest Level Detected	Range	Major Sources in Drinking Water	MCL Violation Yes/No
11	NORGANIC CH	EMICALS						
Barium	ppn	2020	2	2	0.16	0.16 -0.16	Erosion of natural deposits	No
Fluoride	ppn	2020	4.0	4.0	0.19	0.19 - 0.19	Erosion of natural deposits	No
Di	ISINFECTION .	BY-PRODUCTS						
Total Trihalomethanes	s ppb	2020	80	N/A	13.0	12.7 - 12.7	By-product of drinking water disinfection	No
Total Haloacetic Acids	s ppb	2020	60	N/A	2	1.6 - 1.6	By-product of drinking water disinfection	No
Chlorine	ppn	2020	4.0	N/A	1.0	0.8 - 1.0	Drinking Water Treatment	No
R	ADIOACTIVE	CONTAMINANTS						
Beta/photon emitters	pCi/	2018	50	0	8.3	8.3 - 8.3	Decay of natural and man-made deposits.	No
Combined Radium 22	.6/228 pCi/	2018	5	0	3.1	0 - 3.1	Erosion of natural deposits.	No
Gross alpha	pCi/	2018	15	0	5.3	0 - 5.3	Erosion of natural deposits.	No

Parameter	Units	Collection Date	Action Level	MCLG	90th Percentile	# Sites Over AL	Major Sources in Drinking Water	AL Exceedance Yes/No
Lead	ppb	2018	AL = 15	0	ND	0	Corrosion of household plumbing	No
Copper	ppm	2018	AL = 1.3	1.3	0.05	0	Corrosion of household plumbing	No

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.